PDA

View Full Version : Color Sytem Engineering part I



Pages : [1] 2 3

Photo Engineer
02-08-2010, 08:55 PM
This is the port of part 1 from Photo Net posted years ago.

I hope it reaches a suitable audience here as it did there at that time.

To carry over some comments from PN, yes, there are better ways to design photo products today. But, since they are not available to us, I used the methods available to Hanson, Vittum and other early workers in the field.

And, I am not the best of persons in this area, just as I am not the best to teach emulsion making. However, I can do it and I am willing to do it!

================================================== ===

We are going to design a hypothetical color negative film. Much of what I say is applicable to reversal films. Major exceptions include masking and contrast.

First, we have to have an aim. We work backwards from the print. Since any viewable material will have a toe and shoulder, and since the eye integrates them into the overall experience to obtain the final result, and we know there is a 1:1 density to exposure relationship in the real world, we know that the print material will have an overall contrast greater than one. This value actually works out to about 1.5 - 1.7 based on B&W experience. Using the same B&W experience, this puts the paper's origianl contrast at between 2 and 2.5, so by simple division we come up with a film contrast of about 0.6, the range being 0.5 to 0.7 on average.

We also know that an average scene can encompass a range of about 1.8 log E or 6 stops. (6 * 0.3 = 1.8)

So, we have a potential aim curve of slope 0.6, and straight line portion of 1.8 minimum. Lets give the customer some latitude and extend that curve to 2.4 or 3.2 Log E for over and underexposure latitude.

Ok, progress. Now, if we want overexposure and underexposure latitude, the EI has to be correct, but the threshold speed must be faster by the amount of latitude you wish to allow underexposure without being completely on the toe.

Lets assume a 100 speed film is our aim. Then the emulsions have to be far faster than 100 to achieve this final speed. First, the EI is going to be 100, second, the absorber dyes and antihalation are going to eat up speed, and third, turbidity of couplers and overlying layers are going to eat up speed due to internal reflection and absorption of light.

Pracitically then, lets assume that the blue layer, on top, has to be 200 speed, the green layer coming second, has to be 300, and the red layer on the bottom has to be 400 to account for these losses. This means 3 different emulsions with graded sensitivity, grain size, halide content and etc. And, being on the bottom, the cyan (red) layer will be the slowest to develop due to grain size, halide ratio, and diffusion effects, so we have to keep them in mind when designing the entire package.

Now, we coat our first single layer experiments and get 3 B&W coatings of B, G, and R emulsions, and they show great development in an MQ, but practically no development in a color developer. Reasoning this out, we find that without coupler to scavenge oxidized color developer, a color developer is very slow in development due to equllibrium effects. Oxidized color developer build up acts to restrain further development, so we have to either coat couplers to start with or rely on MQ tests.

Relying on MQ tests is dangerous, as MQ results are based on visual silver density, but color formation is based on mass of silver developed. One mole of silver can produce either 1/2 or 1/4th of a mole of dye depending on coupler type. This is a critical factor.

So, you decide to go with color tests for your single layers and coat single color R, G, and B coatings with C, M, and Y dye forming couplers. (which ones you pick is a real problem. You have an entire group out there testing them for activity, dye stability and dye hue for product families)

You coat and process your single color experiments and find that the results give you good D-min and a D-max of 3.0, with a latitude of 0.9 Log E. Whoops, you want 1.8 to 3.2 for your film. Oh, the contrast is about 1.5 as well. Back to the drawing boards. It seems that to achieve even the minimum of 1.8, you will need to blend at least 3 emulsions in each layer to get the latitude you want. For example, in the blue layer, the fast component will be ISO 200, with a latitude of 0.9 log E, and the medium will be ISO 25 to blend in with the shoulder of the fast, and the slow will have to be ISO 3 to blend in with the shoulder of the medium. In other words, blending 3 emulsions make the curves additive and they must be separated in speed by the speed width of the latitudes of each emulsion.

So, by coating a fast medium and slow each at 1/3 of the desired silver rate, we get a curve that is 3 x .9 or 2.7 log E in total latitude. Just about where we want to be. And the contrast is about 1/3 the original or about O.5. (Looking at those emulsion speeds, do you see why a color negative film can be exposed at 200 or 50 if the ISO is rated at 100? Hint.. Hint.. Hint..)

By now, we have 3 single layer color coatings that give us a latitude of about 2.7, contrast of about 0.5 and mid curve speed of about 100 B, 150 G, and 200 R, with threshold speeds of 200 B, 300 G, and 400 R.

We now coat a coating with R first, G, then B in a 3 layer package and we process it. What do we see? Blue looks normal, G is about 1/2 the contrast and about 1/2 stop slower, and R is about 1/3 the contrast or less and about a stop slower. The dye images look like mud. I would call it Cyan, Grape and Pumpkin. Not Cyan, Magenta, and Yellow. Something seriously went wrong.

Well, enough for now. I'll wait for comments from you all and answer questions as we go along in this thread. Lets see if there is any interest!

Enjoy

Mike Wilde
02-09-2010, 07:31 AM
Very interesting. I enjoy explanations that do not shy away from including mathematical realities of the situation.

Please, do contine.

AgX
02-09-2010, 08:29 AM
Very much appreciated!

Tim Gray
02-09-2010, 09:14 AM
Fascinating. So guessing, what speed emulsions do the current ISO 800 films on the market use for the different emulsions? Also for tungsten film, I would imagine the blue layer is a faster emulsion?

How does this compare to the high speed B&W films? I know from reading your other posts that B&W films use a blend of speeds too, but for an ISO 800 B&W film (like TMZ), roughly what speed emulsions make up the final product?

Lastly, this is somewhat unrelated, but in terms of paper, what CI's or gammas correspond to what grades (roughly speaking)?

Photo Engineer
02-09-2010, 09:54 AM
A typical film today has a fast component at least one to two stops faster than the rated box speed if not faster. In color daylight films, the speeds are B=G=R approximately with a bias to higher speed as the layer is buried deeper into the structure. Due to the lack of blue light in tungsten though, the blue layer is much faster than the red and this is one of the problems with having a fast tungsten film.

PE

Photo Engineer
02-09-2010, 09:57 AM
The gamma of a grade 2 paper is about 2 - 2.5. The speed of a paper enlarging emulsion is about ISO 25. One stop of that speed is gained by means of back reflection though, so the truer ISO of a paper emulsion on film would be no more than about 12. This was obtained by doing the actual experiment.

PE

hrst
02-09-2010, 11:23 AM
Thank you! Keep going, color is interesting.

If I guess right, the next problem is oxidized color developing agent wandering to the neighbor layer, forming wrong dyes and giving muddy colors. And the blue-sensitivity of all layers.

There will be a lot of layers.... Good luck in teaching us :D.

kraker
02-09-2010, 03:02 PM
A very interesting read, PE, thanks. Just to make sure: MQ, that would be Metol-Quinol? Of all the things that acronymfinder comes up with, that sounds like the most plausible. So, that's just testing in a B&W developer?

I'm awaiting the next part with much interest :).

Iwagoshi
02-09-2010, 03:03 PM
Thank you indeed, please continue.

Photo Engineer
02-09-2010, 03:40 PM
A very interesting read, PE, thanks. Just to make sure: MQ, that would be Metol-Quinol? Of all the things that acronymfinder comes up with, that sounds like the most plausible. So, that's just testing in a B&W developer?

I'm awaiting the next part with much interest :).

Metol, Hydroquinone is the mix that gives the acronym MQ.

We, in the industry, have used that since just about forever.

Another is EAA (Elon, Ascorbic Acid) another acronym used rather universally.

PE

kraker
02-09-2010, 03:48 PM
Metol, Hydroquinone is the mix that gives the acronym MQ.


I see. Acronyms aren't always logical, taking the Q and not the H of hydroquinone...

Anyway, thanks for clarifying (and be careful of using other acronyms in the next parts, or expect more questions from me :D). ;)

akulkis
06-27-2013, 02:36 AM
This is the port of part 1 from Photo Net posted years ago.

By now, we have 3 single layer color coatings that give us a latitude of about 2.7, contrast of about 0.5 and mid curve speed of about 100 B, 150 G, and 200 R, with threshold speeds of 200 B, 300 G, and 400 R.

We now coat a coating with R first, G, then B in a 3 layer package and we process it. What do we see? Blue looks normal, G is about 1/2 the contrast and about 1/2 stop slower, and R is about 1/3 the contrast or less and about a stop slower. The dye images look like mud. I would call it Cyan, Grape and Pumpkin. Not Cyan, Magenta, and Yellow. Something seriously went wrong.

Well, enough for now. I'll wait for comments from you all and answer questions as we go along in this thread. Lets see if there is any interest!


Film as you described it:

Sensitivity => dye layer result
200 Blue => yellow pumpkin
300 Green => magenta grape
400 Red => cyan cyan!
[BASE LAYER, not water permeable]

I take it that
1: a yellow filter layer must be underneath the blue emulsion, so that any blue light which make it past the Blue-sensitive layer can't activate silver particles in the Green-sensitive and Red-sensitive layers...because ALL silver halides are ALWAYS sensitive to UV and blue light..

Which gives us an actual structure like this:
Sensitivity => dye layer result
----------------------------------------
200 Blue => yellow pumpkin
[Yellow filter, not stated, to protect lower layers from blue light]
300 Blue + Green => magenta grape
400 Blue + Red => cyan cyan!
[BASE LAYER not water permeable]

2. Yellow came out as pumpkin due to that area of the negative being contaminated with dye formation in the magenta-producing layer.

Dynamic at work. Developer flows THROUGH the layers, starting at the top, and works its way towards the bottom layer of the film...and this effect is strongest as the developer first hits a layer, before the layer beneath it is wet... so there's really strong developer activity, producing lots of oxidized developer..but because the layer below it is still dry, a significant amount of the developer that is oxidized in the first few seconds with the top layer end up migrating deeper into the film [green layer producing magenta dye] before hitting a dye coupler. And while this isn't the majority of the developer oxidized in the yellow layer, its enough to change what should be an area of the negative with only yellow dye into one that has lots of yellow dye PLUS enough magenta to screw up our colors.

Similarly, with the magenta-producing layer... as the fresh developer first works its way the magenta layer, there is still overall drift of the water molecules through the gelatin to drag oxidized developer from the magenta-producing layer down into the cyan-producing layer, thus yielding "grape". Next, even after the magenta-producing layer is water saturated, this drift-induced effect continues because water is STILL migrating into the cyan-producing layer..

Lastly, in the bottom (cyan-producing) layer, there is no color distortion because as some oxidized developer makes its way down to the film base, well, now it's deep within the cyan-producing layer, and will have to travel all the way up to the top of the cyan-producing layer before it can possibly meet up with a dye coupler from the wrong layer...and by the time such a thing could happen, there is no longer any net directional drift of water + developer + oxidized developer through the layers, and so the oxidized developer molecules at that point

I'm assuming that after the initial water "front" reaches the film base, the effect of net drift of water + chemistry ceases to have much effect.

Photo Engineer
06-27-2013, 11:09 AM
Diffusion of oxidized color developer is in a sphere around the site of development. The lifetime of the oxidized color developer is longer than the diffusion rate into or through more than one layer. Thus, all colors will remain contaminated.

The solution you suggest is therefore not viable. The correct solution is to add an oxidized developer scavenger to either the film or the color developer. Sulfite might work just fine, but it can vary in concentration due to aerial oxidation. Therefore it is best to add an antioxidant to the film, in the interlayers.

Any suggestions on modification now? :)

PE

akulkis
06-27-2013, 11:19 PM
I didn't know I suggested a solution :-) I was just trying to see if I understood the actual problem, and the dynamics which caused it.. which you confirm IS an issue, but not for the specific problem you presented. Thanks for the explanation of oxidized developer scavangers...that would have probably eluded me for a long time.

I had heard that color film actually consisted of a dozen layers or more, but before reading this thread, I never understood why. Now I do, especially with your mention of oxidized developer scavangers in interlayers.

Tom1956
06-27-2013, 11:48 PM
I have no constructive input to this conversation; only wonderment. I'm trying to wrap my mind around the enormity of a machine that would apply a dozen layers of emulsion on the film base. I can only conclude that the master roll goes through multiple passes, drying, and re-rolling on the machinery, that it is not done in a single pass, or the machine would be a mile long. I also wonder if the liquid emulsion is applied by rollers like a printing press, or if the base is run through the machine with a bead of liquid, whose viscosity is carefully controlled to draw ann appropriate amount of liquid out of the bead, hence controlling thickness of the emulsion layer.
I also wonder how long of a distance must the wet film travel before it is hardened enough to roll on the other end.

Bill Burk
06-28-2013, 12:29 AM
Thanks PE,

I typically "ignore" reading about color, I like B&W so much more.

But although I know I have a long straight line, and I have seen graphs and overlapping curves to build that straight line. For some reason I hadn't been thinking of it as three different speed emulsions like 200, 25 and 3

MattKing
06-28-2013, 12:57 AM
I have no constructive input to this conversation; only wonderment. I'm trying to wrap my mind around the enormity of a machine that would apply a dozen layers of emulsion on the film base. I can only conclude that the master roll goes through multiple passes, drying, and re-rolling on the machinery, that it is not done in a single pass, or the machine would be a mile long. I also wonder if the liquid emulsion is applied by rollers like a printing press, or if the base is run through the machine with a bead of liquid, whose viscosity is carefully controlled to draw ann appropriate amount of liquid out of the bead, hence controlling thickness of the emulsion layer.
I also wonder how long of a distance must the wet film travel before it is hardened enough to roll on the other end.

This is what you need: http://www.apug.org/forums/forum379/120268-making-kodak-film-shanebrook-i-will-stop-shipping-books-september-30-2013-a.html

Photo Engineer
06-28-2013, 11:06 AM
Bob's book is certainly a great way to learn about making film. I recommend it.

Basically, up to 12 or more layers are coated at one time using one slide or curtain coating hopper. These layers all go through nearly one mile of high speed drying and the coatings are made on mile long (or longer) rolls that are up to 72" wide.

PE

Tom1956
06-28-2013, 12:32 PM
No need to answer, as I don't want to clutter the thread. I'll not be buying any book because I live hand to mouth as it is. I'm trying to picture in my mind a very long conveyor with conductuion rollers that can only make contact with the backside of the film. Obviously, if the film is wet, then no rollers can ride on the emulsion side. Unless the machines are built where any tires on the front side are all aligned, and there are several sacrificial strips along the width of the roll, that are slit out later and thrown away.

Hexavalent
06-28-2013, 03:36 PM
Mind Blown!