Switch to English Language Passer en langue française Omschakelen naar Nederlandse Taal Wechseln Sie zu deutschen Sprache Passa alla lingua italiana
Members: 77,658   Posts: 1,715,113   Online: 737
Results 1 to 4 of 4
  1. #1

    Join Date
    Aug 2005
    Los Alamos, NM
    Multi Format

    A Fluorescent Safelight

    A Fluorescent Safelight


    Over the past several months there has been a lot of discussion in the forums about home built safelights using LEDs or fluorescent lamps. When I built my
    new darkroom, I decided to try to build my own safelight. For many years I have used a commercial safelight that is a 24 inch standard cool white fluorescent tube inside a special sleeve that makes it the equivalent of an OC safelight. This has been an excellent lamp, and it is safe for up to 15 minutes at five feet. Lamps like this are still commercially available with either OC or Number 1 filters; but they are now quite expensive.

    For many years, the OC safelight filter has been the standard for black and white papers. But recently several papers from eastern Europe have become available that recommend a red safelight and warn against using the OC. For this reason, I decided to go with a red safelight in my new darkroom.

    Design and Construction:

    The safelight I built uses only commercially available components. The only special construction considerations are the usual concerns for hanging and wiring a standard fluorescent fixture.

    The safelight is based on a standard fluorescent "Shop Light" that takes two 40 watt, 48 inch instant start fluorescent tubes. I chose to use red fluorescent lamps (F40T12/R). These tubes have a red emitting phosphor and a red coated tube that restricts emission of the mercury lines and phosphor fluorescence outside the red region. This means a brighter and safer light that can be used without special sleeves. The tubes I used carry the American "Industrial" brand name and are called "red ceramic" lamps.

    Manufacturers can use any of several phosphors in their lamps, and they can use any of many filter coatings on the tubes. The phosphor and filter will affect the brightness and safety of the safelight. I checked my tubes with a hand spectroscope. They showed a pure band spectrum from mid-orange through mid-red with no trace of mercury lines or emissions at shorter wavelengths. This indicates one of the older silicate or germanate phosphors. Europium activated phosphors show a red line spectrum superimposed on a red band spectrum which is more confined to the red. They are also much brighter.

    Although I could not see any short wave radiation from the fluorescent lamps, I decided to use sleeves to further attenuate those wavelengths just to be on the safe side. I chose inexpensive sleeves with Rosco number 27 medium red gel filters. These filters are designed for theatrical, not photographic, use, and you should not trust them alone for safelights. Rosco publishes transmission spectra for its products, and the number 47 filter shows an effective cutoff around 602 nm with a gradual rise into the red. In combination with these filters, my tubes show a very small amount of orange (around 600nm) and the same red band seen before. There was significant attenuation as well. The combination appeared to be quite suitable for safelights.

    The light fixture was mounted to the ceiling of my darkroom. A permanent extension cord was installed from the lamp plug down to my enlarger area for use with the enlarger timer. The distance from the center of the light fixture to the center of my enlarging easel is a little over six feet.


    You should test any safelight. You must test any home built safelight. The safety of a safelight is a relative thing. The sensitivity of photographic papers does not cut off at any particular wavelength, but it diminishes toward the red. Bromide emulsions have a slight but very significant sensitivity to red light. What you can use as a safelight depends on the sensitivity of the photographic material, the wavelengths emitted by the safelight, the intensity of the light, and the duration of the exposure. With all these variables, only a test will give you guidelines on how to use the safelight without degrading your prints.

    Overexposure to the safelight usually causes a very slight fogging of the print which is seen as a reduction in contrast or veiling of the highlights. Usually it can't be noticed except by direct comparison to an unaffected print. You need a test that will show these effects. The effects are additive to the normal print exposure, so they will degrade a print even though you can see no fog on a piece of paper that has just been exposed to the safelight.

    The test I used involves making a standard print and then exposing bands of it to the safelight in a test strip. The effects are easiest to see in light areas, around Zone VI (sky, light rocks, skin tone). The idea of this test method is to expose a print on enlarging paper and then to add various amounts of safelight exposure to determine what is safe. To make evaluation easier, coins are used to block out the safelight in each band of safelight exposure.

    Select a negative that give you plenty of middle highlights. Determine the exposure for a decent print. Make a print in the dark (no safelight). Place a number of coins in a row across the exposed paper; try to get them in the medium light areas of the print. Place an opaque card over the exposed paper and turn on the safelight. Now make a test strip using the safelight. Move the card to expose the first coin; expose for a time; move it to expose the second coin; expose for the same time; and continue in this pattern until all the coins have been exposed. Two, three, or five minutes per coin, depending on how confident you are, are reasonable times for each step. When done, turn off the safelight and process the paper in the dark. I used a tube processor to make this easier. Look at the print carefully. The exposure where the print shows the first hint of the outline of the coin tells you how long it takes before the safelight starts fogging your paper. As a rule of thumb, you can scale this time according to the paper speed for other papers.

    My safelight is quite bright, and I expected to have limited working time. My test ran to 12 minutes, and I could not see any affect. Since that was a sufficient working time for me, I did not test any further. If the light is too bright, it is easy to reduce the illumination. Just run a piece of tape down the front side of each fluorescent tube. One inch blue painter's tape or black cloth tape should work fine. That will cut the light to about half.


    It is quite possible and economical to make an effective safelight using fluorescent lamps. Other designs are certainly possible, and this paper is just intended to give you some ideas. Testing a safelight is easy and gives you confidence about how safe your safelight is.
    Last edited by nworth; 08-07-2008 at 12:23 AM. Click to view previous post history.

  2. #2
    Mick Fagan's Avatar
    Join Date
    Sep 2005
    Melbourne Australia
    Multi Format
    Very good article, if you are doing B&W only, great.

    I worked in a commercial darkroom where there were 4' fluorescent lamps in some of the darkrooms but only tungsten in the rest.

    The fluorescent tubes are a bit of a problem with colour paper as they do retain a slight afterglow. In a large darkroom this is sometimes not a problem, but in a smaller darkroom, there was a problem with long exposures with colour paper.

    We were actually able to see the shape of the tube (glowing slightly) about 30 seconds after we turned the lights out, as our eyes started to open up.

    Another issue was with the instant startup, they sort of fizzle a bit after repeated switching over a period of about ½ a year. Especially if you are doing about 300 colour prints in a days work and there are two shifts.


  3. #3
    Akki14's Avatar
    Join Date
    Feb 2007
    London, UK
    4x5 Format
    Also note that you should replace your theatrical gels regularly. They do eventually change(or wear out) over time, just like the Ilford Multigrade gels/filters.
    oooh shiny!

  4. #4

    Join Date
    Jul 2007
    Massachusetts, USA
    Multi Format
    The Rosco #27 tube filters are $14.95 each in the current (#47) Rosco catalog. My local dealer will give me a 10% discount, even though I'm ordering only two. Check their web site (http://www.rosco.com) for local dealers. He said they could be shipped direct to my home. You may also be able to order direct from Rosco, at least their customer service folks were very prompt in replying to an email.

    The catalog number for 48" T12 filters made of #27 material is:

    110 08401 4812 27

    The sleeves come with end caps, though these might not be needed with the red fluorescent lamps.

    The #27 material is called "Medium Red". It's actually much darker than your standard red filter for black-and-white photography, more like the B+W-brand 091. Given the spectral transmission curve (in the little swatch book the dealer gave me, and at the Rosco site), I'll try some standard 48" tubes with the filters first. There's nothing to lose but 30 minutes and a few sheets of paper for testing, and it could wind up being much less expensive than the minimum order of 6 F40T12/R tubes.



Contact Us  |  Support Us!  |  Advertise  |  Site Terms  |  Archive  —   Search  |  Mobile Device Access  |  RSS  |  Facebook  |  Linkedin